
INTRODUCTION

Recognition of functional sites is one of the key
problems of genome annotation [1]. There exist a
large number of site prediction algorithms, reviewed
in [2]. The most widely used methods are consensus
and profiles based on evolutionary conservation of
functional sites of the same type [3–7]. The tests of
the existing genome annotation algorithms [8, 9] dem-
onstrate both the fast progress in this area and the
need for improved reliability, which still is a limiting
factor in genome annotation.

In this connection we suggest a “systemic” ap-
proach to enhancing the site recognition reliability,
based on the Central Limit Theorem. At the core of
the approach is averaging of many different proce-
dures for recognition of the same signal. Formal gen-
eration of such procedures uses the conventional con-
sensus and profile methods, and to increase the num-
ber of generated procedures, we use 20 different “oli-
gonucleotide recoding” alphabets. We have developed
a computer system for automated generation of C pro-
grams for oligonucleotide consensus and profile reco-
gnizers given an aligned set of site sequences. This
system has been used to analyze the binding sites of

transcription factors GATA-1 and C/EBP. It has been
demonstrated that the “averaged” recognizers pro-
duced more exact predictions than any of the 40 “par-
ticular” recognizers in each of these alphabets, as ex-
pected from the Central Limit Theorem.

EXPERIMENTAL

The proposed 20 “oligonucleotide recoding” al-
phabets are presented in the table. Each of them con-
tains a complete set of 2, 4, 8, 16, 32, or 64 short
oligonucleotides of fixed length from one through
five nucleotides. One can see that at expected nucleo-
tide frequencies p(A) = p(T) = p(G) = p(C) = 0.25, all
oligonucleotides over the same alphabet have the
same expected frequencies. The table also lists the
critical oligonucleotide frequencies f0. If the observed
frequency of an oligonucleotide exceeds the critical
frequency, the oligonucleotide is included into the site
consensus. Figure 1 presents examples of automati-
cally generated C texts implementing the procedures
for site recognition by consensi and profiles using the
alphabets from the table. One can see that both for
consensus recognizers (Fig. 1a, b) and profile recog-
nizers (Fig. 1c, d) the programs using the standard
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Fig. 1. Examples of automatically generated C programs for GATA-1 recognizers using consensi (a, b) and profiles (c, d) in var-
ious alphabets. The programs in the conventional alphabet {A, C, G, T} (a, c) insignificantly differ from the programs in other
alphabets (b, d).

(a)
double GATA1_1bp_Cons_ATGC (char *Seq){
double X=0.; char N, *s; s=&Seq[0];
if(strlen(Seq)<28) return (–99.);
N=s[11];switch(N){ case’G’: X++;break;}
N=s[12];switch(N){ case’A’: X++;break;}
N=s[13];switch(N){ case’T’: X++;break;}
N=s[14];switch(N){ case’A’: X++;break;}
N=s[15];switch(N){ case’A’: X++;break;}
N=s[16];switch(N){ case’G’: X++;break;}
N=s[17];switch(N){ case’G’: X++;break;}
return ( (X–3.7353)/ 1.8333);}

(b)
double GATA1_5bp_Cons_ATGC_X (char *Seq){
double X=0.; char N1, N2, N3, *s; s=&Seq[0];
if(strlen(Seq)<28) return (–95.);
N1=s[9]; N2=s[11]; N3=s[13];
if(N1== ‘C’ && N2==’G’ && N3== ‘Ò’)X++;
N1= s[10]; N2= s[12]; N3=s[14];
if(N1==’A’ && N2== ‘À’&& N3== ‘À’)X++,
if(N1==’T’ && N2==’À’ && N3==’A’)X++;
N1= s[11]; N2=s[13]; N3=s[15];
if(N1==’G’ && N2== ‘Ò’ && N3==’À’)X++;
N1= s[12]; N2=s[14]; N3=s[16];
if(N1==’À’ && N2==’À’ && N3=’G’)X++;
N1=s[13]; N2=s[15]; N3=s[17];
if(N1==’T’ && N2==’À’ && N3==’G’)X++,.
return ((X- 1.3039)/1.2843);}

(c)
double GATA1_1bp_ Freq_ATGC (char *Seq){
double A[28]={0.255, 0.073, 0.273, 0.345, 0.182, 0.164, 0.109, 0.309, 0.273, 0.145,

0.491, 0.018, 0.909, 0.018, 0.764, 0.673, 0.127, 0.182, 0.255, 0.364,
0.473, 0.418, 0.164, 0.218, 0.236, 0.200, 0.309, 0.291};

double T[28]={0.291, 0.291, 0.382, 0.255, 0.255, 0.200, 0.255, 0.255, 0.255, 0.255,
0.418, 0.018, 0,018, 0.764, 0.164, 0.018, 0.164, 0.109, 0.255, 0.164,
0.182, 0.182, 0.255, 0.436, 0.291, 0.164, 0.309, 0.255};

double G[28]={0.182, 0.236, 0.145, 0.164, 0.345, 0.400, 0.364, 0.145, 0.255, 0.200,
0.055, 0.945, 0.036, 0.036, 0.055, 0.291, 0.618, 0.618, 0.182, 0.236,
0.164, 0.273, 0.236, 0.109, 0.291, 0.473, 0.218, 0.200};

double C[28]={0.273, 0.400, 0.200, 0.236, 0.218, 0.236, 0.273, 0.291, 0.218, 0.400,
0.036, 0.018, 0,036, 0,182, 0.018, 0.018, 0.091, 0.091, 0.309, 0.236,
0.182, 0.127, 0.345, 0.236, 0.182, 0.164, 0.164, 0.255};

double X=0.; char N, *s; s=&Seq[0];if(strlen(Seq) < 28) return (–91.);
for(i=0;i<28;i++){ N=s[i];switch(N){case’A’: X+=A[i];break; case’T’: X+=T[i];break;
case’G’: X+=G[i];break; case’C’: X+=C[i];break; }}return ((X- 8.8250)/ 1.7754);}

(d)
double GATA1_3bp_ Freq_WS_X (char *Seq){
double WW[28]={0.364, 0.255, 0.364, 0.291, 0.164, 0.164, 0.218, 0.182, 0.491, 0.018,

0.855, 0.018, 0.873, 0.545, 0.255, 0.127, 0.182, 0.182, 0.364, 0.400,
0.273, 0.345, 0.164, 0.200, 0.364, 0.255, 0.001, 0.002};

double WS[28]={0.182, 0.109, 0.291, 0.309, 0.273, 0.200, 0.145, 0.382, 0.036, 0.382,
0.055, 0.018, 0.055, 0.236, 0.673, 0.564, 0.109, 0.109, 0.145, 0.127,
0.382, 0.255, 0.255, 0.455, 0.164, 0.109, 0.001, 0.002};

double SW[28]={0.291, 0.345, 0.073, 0.073, 0.200, 0.400, 0.309, 0.218, 0.418, 0.018,
0.073, 0.764, 0.055, 0.145, 0.036, 0.164, 0.327, 0.345, 0.291, 0.200,
0.145, 0.309, 0.364, 0.164, 0.255, 0.291, 0.001, 0.002};

double SS[28]={0.164, 0.291, 0.273, 0.327, 0.364, 0.236, 0.327, 0.218, 0.055, 0.582,
0.018, 0.200, 0.018, 0.073, 0.036, 0.145, 0.382, 0.364, 0.200, 0.273,
0.200, 0.091, 0.218, 0.182, 0.218, 0.345, 0.001, 0.002};

double X=0.; int i; char N1, N2, *s; s=&Seq[0];if(strlen(Seq)<28) return (–97.);
for(i=0;i<26;i++){ N1=s[i]; N2=s[i+2]; switch(N1){
case’A’: case’T’: switch(N2){case’A’: case’T’: X+= WW[i];break; case’G’: case’C’: X+=WS[i];break,} break;
case’G’: case’C’: switch(N2){case’A’: case’T’: X+=SW[i];break; case’G’: case’C’: X+= SS[i];break;} break;} }
return ((X- 8.0340)/ 1.6230);}



{A, T, G, C} alphabet (Fig. 1a, c) are similar to the
programs using the alphabets from the table (Fig. 1b, d).

If there exist K recognizers {fk}1 ≤ k ≤ K for some
signal, the results of application of these methods to a
sequence S can be averaged:
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=
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where all values fk(S) are normalized for N sites (Site)
or random DNA (Rand):
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The heuristic rule for site recognition is

{if FK(S) > 0 then S is a site}. (1c)

According to the Central Limit Theorem, one
should expect that as the number of recognizers K in-
creases, the distribution of the values FK tends to the
Gaussian distribution with the means 1 for sites and
–1 for random sequences. The standard deviations are
decreasing as K–1/2.

Thus we suggest to use the constant difference
between means and decreasing standard deviations of
FK for sites and random sequences as one of the possi-
ble ways to improve the reliability of site annotation
in genomic DNA.

RESULTS AND DISCUSSION

Nucleotide sequences of experimentally deter-
mined binding sites of transcription factors GATA-1
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Oligonucleotide alphabets

Alphabet En = {e1, ..., en} of oligonucleotides of length L
Threshold, f0 Used before

F L M=A/C, K=G/T, R=A/G, Y=T/C,  W=A/T, S=G/C n

N4 1 A, T, G, C 4 0.500 see review [2]

N16 2 AA, AT, AG, AC, TA, TT, ..., GC, CA, CT, CG, CC 16 0.333

N64 3 AAA, AAT, AAG, ..., CGC, CCA, CCT, CCG, CCC 64 0.125 [10]

Nx16 3 AxA, AxT, AxG, AxC, ..., CxA, CxT, CxG, CxC 16 0.333

Nx64 5 AxAxA, AxAxT, AxAxG, ..., CxCxT, CxCxG, CxCxC 64 0.125

MK4 2 MM, MK, KM, KK 4 0.500

MK8 3 MMM, MMK, MKM, MKK, ..., KMK, KKM, KKK 8 0.250

KM16 4 MMMM, MMMK, MMKM, ..., KKKM, KKKK 16 0.333

MKx4 3 MxM, MxK, KxM, KxK 4 0.500

MKx8 5 MxMxM, MxMxK, MxKxM, ..., KxKxM, KxKxK 8 0.250

RY4 2 RR, RY, YR, YY 4 0.500

RY8 3 RRR, RRY, RYR, RYY, YRR, YRY, YYR, YYY 8 0.250

RY16 4 RRRR, RRRY, RRYR, ..., YYRY, YYYR, YYYY 16 0.333

RYx4 3 RxR, RxY, YxR, YxY 4 0.500

RYx8 5 RxRxR, RxRxY, RxYxR, RxYxY, ..., YxYx R, YxYxY 8 0.250

WS4 2 WW, WS, SW, SS 4 0.500

WS8 3 WWW, WWS, WSW, WSS, SWW, SWS, SSW, SSS 8 0.250

WS16 4 WWWW, WWWS, WWSW, ..., SSSW, SSSS 16 0.333

WSx4 3 WxW, WxS, SxW, SxS 4 0.500

WSx8 5 WxWxW, WxWxS, WxSxW, ..., SxSxW, SxSxS 8 0.250
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(102 sequences) and C/EBP (62 sequences) were
taken from the database ALIGN available at
http://wwwmgs.bionet.nsc.ru/. Each of the two sam-
ples was divided into two equal nonintersecting
subsamples, training and control. The training sub-
sample was used to generate C programs as described
above. The examples for consensi are given in
Fig. 1a, b; for profiles, in Fig. 1c, d.

The control subsamples were used to test the
performance of the recognizers on independent exper-
imental data. The type 1 and 2 errors (α1 and α2) were
estimated, as well as the means and standard devia-
tions of the discriminating values of these recognizers
on sites and 1000 random nucleotide sequences of the

same length. Figure 2a, b (curves 1) presents the de-
tailed comparison of dependencies between the levels
of the type 1 and type 2 errors for “averaged recog-
nizer” of GATA-1 (a) and C/EBP (b) sites. For com-
parison, the results produced by the conventional pro-
file algorithm are given (curves 2). One can see that
the “averaged recognizer” has less type 2 errors at any
level of the type 1 errors than the profile.

To clarify the causes of this improvement in per-
formance, we determined the dependence between the
standard deviation of the discrimination values FK of
the “averaged recognizer” on the number K of particu-
lar recognizers. At fixed value of K from 2 through 38,
K out of 40 consensi and profiles (Table) were selected
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Fig. 2. Dependence between the type 1 and 2 errors (α1 and α2 respectively) of “averaged recognizer” (curves 1) and profile
recognizer (curves 2) of GATA-1 (a) and C/EBP (b) sites.

Fig. 3. Dependence of the standard deviation (SD) of the discrimination values FK of the “averaged recognizer” on the number
of particular recognizers k for the control subsample of GATA-1 sites (a) and 1000 random DNA sequences of the same length
(b): 1, without {A, T, G, C}; 2, with {A, T, G, C}; diamond: complete averaging.



at random to obtain the “averaged recognizer” by for-
mula (1). Ten independent random tests were per-
formed. Figure 3a presents the dependences for the
control subsample of GATA-1 sites. Curve 1 corre-
sponds to the case when the standard alphabet
{A, C, G, T} is excluded from the analysis, and
curve 2, to the case when both the consensus and the
profile in this alphabet is used in all ten tests. Fig-
ure 3b features the same dependences for 1000 ran-
dom nucleotide sequences of the same length.

In Fig. 3a one can see that if the standard con-
sensus and profile in the alphabet {A, C, G, T} are
used, addition of new recognizers does not influence
the standard deviation of the discrimination values FK

(curve 2), whereas in the case when the standard
recognizers are not used (curve 1) the standard devia-
tion of FK soon reaches a stationary level and then
again does not depend on the number K of the particu-
lar recognizers being averaged. This means that the
type 1 error substantially depends on the quality, size,
homogeneity, and representativeness of the experimen-
tal data, in agreement with the common knowledge.

However, as demonstrated by Fig. 3b, the type 2
error has quite different properties. Independent of the
incorporation (curve 2) or excluding (curve 1) of the
conventional consensus and profile in the alphabet
{A, T, G, C}, the standard deviation of the values FK

decreases proportionally to K–1/2 according to the Cen-
tral Limit Theorem. This means that the increase of
the prediction reliability is caused by adecrease of the
type 2 error determined mainly by the standard devia-
tion of the discrimination values FK on random DNA
sequences.

Thus, the results presented show that the reli-
ability of genomic DNA annotation can be achieved
by averaging of many particular recognizers.
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