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Abstract

Currently single nucleotide polymorphism (SNP) analysis becomes the crossroad of bioinformatics and medicine. We have developed a
data mining system, http://wwwmgs.bionet.nsc.ru/mgs/systems/rsnp/, called rSNP_Guide, to discover regulatory sites in DNA sequences,
which mutations could be the cause of genetic diseases. During the first step, we estimate the abilities of the proteins considered to bind to
genomic DNA, which alterations by mutations are associated with a genetic disease under study. During the second step, we formalize the
disease-associated experimental data on the SNP-referred alterations in DNA binding to unknown protein. During the third step, we cluster
fuzzily all known proteins examined so that to determine one of them, which specific site is altered by mutations in consistence with that of
the unknown protein experimentally associated with genetic disease. During the fourth step, we predict the known protein, which binding site
is (1) resent on DNA and (ii) altered by mutations associated with genetic disease. Finally, during the last step, we estimate the robustness of
this prediction. The rSNP_Guide has been tested on the SNPs with the known relationships between regulatory site alterations and genetic
disease penetration. Besides, the novel SNPs-referred regulatory sites associated with the genetic disease penetrations were discovered and,

then, successfully confirmed experimentally. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since human genome is sequenced in draft, single nucleo-
tide polymorphism (SNP) analysis became the crossroad of
medicine and bioinformatics: over 2.84 millions of SNPs
are detected, including 1.42 millions of SNPs mapped [1].
Thus, it is necessary to develop the systems predicting the
regulatory sites, SNP-referred alterations in that are asso-
ciated with genetic diseases. For recognizing the natural
sites on the basis of their textual similarities, a number of
the pattern recognition tools has been developed earlier [2].
Nevertheless, some experiments [3] have demonstrated that
the sites damaged by mutations could not be reliably recog-
nized only by their similarity to the known sites, because
defective sites, as a rule, have no natural analogs.

On the other hand, due to the drastic growth in numbers of
genome databases and on-line publications, the novel data-
mining tools were developed for automated extracting and
accumulating many site-referred knowledges [4]. By keep-
ing this in mind, heterogeneity of compilations of site
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sequences becomes visible, and, hence, many novel tools
clustering the site-related data into homogeneous subsets
were reported [5]. Besides, novel knowledge discovery
tools has been developed for revealing unobvious regulari-
ties in the structure of site neighborhoods in regulatory gene
regions. These regularities were earlier ignored, thus, limit-
ing the site recognition accuracy [6]. Finally, by integrating
pattern recognition and data mining tools, “in silico” biol-
ogy systems were developed for in-depth studying of
genome structure, function, and variation data [7]. Thus,
during the so-called “Post Genome Era”, bioinformatics
meets with data mining [8].

Following this way, we have used the generating hypoth-
eses [9], decision making [10], and fuzzy sets [11] for study-
ing the textual [12], physicochemical and conformational
[13] regularities of the true site sequence-activity relation-
ships [14] and positionings on DNA [15]. By cross-valida-
tion testing, we have shown that both regressional and
positional regularities of a given site are comparable [16].

In this paper, we present our data mining system, http://
wwwmgs.bionet.nsc.ru/mgs/systems/rsnp/, called rSNP_
Guide, predicting regulatory sites in DNA sequences,
which mutations could be responsible for genetic disease
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Table 1
Relationships between genetic disease and the SNP-referred alterations in DNA sequence and binding to unknown proteins (mutation, bold-faced and
underlined)
Genetic disease Gene, region Mutations SNP Genome DNA sequence DNA/protein binding
Tumors in lung [17] K-ras, intron #2 Wild Type CA (+) 5'-gaaaCtccacttAtca-3’ Present
(-) 5'-tgaTaagtggaGtttc-3'
296A/C CcC (+) 5'- gaaathcaCttEtcaG' Absent
(=) 5'—tga§aagtggaGtttc—3’
288C/G, 296A/C GC (+) 5’—gaaa§tccacttgtca—3’ Absent
(-) 5'—tga§aagtgga§tttc—3’
Drug dependence, Tourette TDO?2, intron #6 Wild Type WT (+) 5'-ataatgGcaGataaga-3' Present
syndrome, attention deficit [18]
(-) 5'-tcttatCtgCcattat-3’
663G/A M1 (+) 5'-ataatgAcaGataaga-3’ Absent
(-) 5'-tcttatCtgTeattat-3'
666G/T M2 (+) 5'-ataatgGeaTataaga-3’ Reduced
5'-tcttatAtgCeattat-3’
Severe malaria [19] NTFa, promoter Wild Type aG (+) 5'-tgtctggaaGttagaa-3’ Absent
(-) 5'-ttctaaCttccagaca-3’
-376G/A aA (+) 5'—tgtctggaaéttagaa—3/ Present
(-) 5/-ttctaa1ttccagaca-3/
Type I protein C deficiency [20] pC, promoter Wild Type WT (+) 5'-ggttatggaCtaactc-3' Present
5'-gagttaGtccataacc-3'
-114C/T MT (+) 5’—ggttatggaItaactc—3/ Absent
(-) 5/—gagttaétccataacc—3/
Bernard-Soulier syndrome [21] Gplbf3, promoter Wild Type WT (+) 5'-gtgctatCtgecgetg-3’ Present
(-) 5'-cagcggcaGatagcac-3’
-133C/G MT (+) 5’—gtgctat§tgccgctg—3/ Absent
(-) 5’—cagcggca§atagcao—3’
Severe bleeding disorder [22] fVII, promoter Wild Type WT (+) 5'-cccctecCecatecct-3’ Present
(-)  5'-agggatgeGggaggge-3’
-94C/G MT (+) 5'-ccecteeGecatecct-3' Absent
(=) 5'-agggatggCegaggge-3'
Hereditary persistence of fetal Gy, promoter Wild Type WT (+) 5'-ccttgacCaatagcct-3’ Present
hemoglobin [23]
(-) 5'-aggctattGgtcaagg-3’
-114C/T MT (+) 5’—ccttgaczaatagcct—3’ Absent

(-) 5'-aggctattGgtcaagg-3’

susceptibility/resistance. Our system adopts the following
approach.

1. During the first step, we estimate the abilities of the
proteins considered to bind to genomic DNA, which
alterations by mutations are associated with a genetic
disease under study.

2. During the second step, we formalize the disease-asso-
ciated experimental data on the SNP-referred alterations
in DNA binding to unknown protein.

3. During the third step, we cluster fuzzily all known
proteins examined so that to determine one of them,
which specific site is altered by mutations in consistence
with that of the unknown protein experimentally asso-
ciated with genetic disease.

4. During the fourth step, we predict the known protein,
which binding site is (i) resent on DNA and (ii) altered
by mutations associated with genetic disease.

5. Finally, during the last step, we estimate the robustness of
this prediction. The rSNP_Guide has been tested on the
SNPs with the known relationships between regulatory

site alterations and genetic disease penetration.

This paper is divided into the following sections. First, we
introduce a biological background with proper mathemati-
cal definitions. Next, by using these definitions, we discuss
implementation of the data mining algorithm in the
rSNP_Guide system and its design. In what follows, we
give the experimental results of the rSNP_Guide application
to studying of the K-ras gene (associated with tumor in
lung) [17] and TDO2 gene (associated with mental disor-
ders) [18], which mutations alter DNA sites binding with
unknown proteins. Also, rSNP_Guide was implemented for
analysis of some other genes, NTFa [19], pC [20], GpIbS3
[21], fVII [22], and Gy [23] with the known site alterations
causing genetic diseases. Finally, we discuss the
rSNP_Guide future development.

2. Biological background

Since replication, translation and other vitally important
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Fig. 1. Data mining approach: (i) Estimating DNA/protein-binding abilities (arrows 1A, 1B, 1C, and 1D); (2) Formalizing the DNA/protein-binding pattern
(arrows 2A and 2B); (iii) Fuzzy clustering the proteins (arrows 3A and 3B); (iv) Predicting (arrow 4); (v) Testing of robustness (arrow 5). Arrow 6, the control
experiment test was planned on the basis of the TF-site predicted by the rSNP_Guide. Screens: A, the SNP-referred experimental data on the alterations in the
examined DNA binding to unkown protein (input data); B, C, and D, the rfSNP_Guide user’s interface; E, the user interface of a TF-site recognition tools
loaded by rSNP_Guide; F, the tools output; G, the output window of the standard package STATISTICA, preference of which as a the robust test tools
platform could be addressed to its common acceptance; H, the control experiment, anti-GATA antibody of which proved the GATA-site prediction. Lines: 0—
no extract; lines 1, 2, 3, 4, and 5—Ilung extract pre-incubated with the gradient concentrations of the anti-GATA antibodies. As one can see, the band under
study is decreasing with the increase of the anti-GATA antibody concentration. Thus, the site GATA present in the allele “CA” is associated with the
susceptibility to tumors in lung, such as it has been predicted by rSNP_Guide.

molecular genetic processes are controlled by the so-called experimental data: (i) DNA sequences and (ii) alterations in
“regulatory proteins” binding to specific genome DNA sites, DNA-protein binding pattern [24]. These data sets are
the SNP-referred mutations of DNA produce alterations in exemplified in Table 1 and in Figs. 1 and 2. As seen in
DNA binding to regulatory proteins, thus, causing genetic Table 1, each SNP-referred variant is represented by two
diseases. DNA sequences corresponding to two oppositely directed

The system rSNP_Guide presented analyzes two sorts of strands of the double helix DNA: the attribute “(+)-chain”
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Fig. 2. Binding of the nuclear proteins to the oligonucleotides corresponding to the alleles WT, M1 and M2 of #6 intron TDO2 gene: (a) the SNP-referred
experimental data on the alterations in the examined DNA binding to unknown protein (the main band and its analysis steps are marked by arrows); (b) how to
use rSNP_Guide in the case of these data analysis, both algorithm and arrow definition of which are the same as the caption to Fig. 1; (c) an example of the
robust test carried out; (d) the control test by anti-YY1 antibody super-shift assay: 1—no extract; 2—liver nuclear extract, no antibodies; 3—Iliver nuclear
extract was pre-incubated with anti-Y'Y 1 antibodies. As seen, the main band, association of which with Y'Y 1-site has been predicted by the rSNP_Guide (arrow
YY1), is super-shifted by the pre-incubation with anti-YY1 antibodies (arrow S).
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denotes DNA strand, which serves as a matrix for
translation and protein synthesis, whereas the attribute
“(—)-chain” marks complementary mirror sequence located
at the opposite strand of DNA helix.

Fig. 1(A) exemplifies another type of the SNP-referred
experimental data analyzed by SNP_Guide. It is compiled
of alterations in DNA binding pattern to unknown protein.
These experimental data are obtained as follows: under
definite experimental conditions, short oligopDNAs corre-
sponding to genome variants under study are synthesized
and preincubated together with the mixture of all proteins
extracted from cell nucleus. By electrophoresis, the
complexes of these oligopDNAs with unknown proteins are
separated according to their mobility in the gel (Fig. 1(A)).
As one can see in Fig. 1(A), three SNP-referred genome
variants are represented by three vertical lines in four hori-
zontal band series, which characterize four patterns of DNA
binding to unknown proteins. These patterns are differing by
mobility of DNA-protein complexes in the gel. In this
figure, the dotted frame marks the SNP-referred alterations
in the examined pattern of DNA binding to unknown
protein: the band characterizing genome variant “CA”
absents in both “CC” and “GC” variants. The rfSNP_Guide
analyzes these data under presumption that the SNP-
referred alterations in the examined pattern of DNA binding
to unknown protein refer to a single target protein. This
target protein strongly binds to DNA due to the presence
of its specific site, which was altered by mutations studied.
However, other proteins extracted from a cell nucleus could
only weakly bind to DNA examined, because their specific
binding sites are absent there. Hence, all regulatory proteins
extracted from cell nucleus should be similar by their DNA-
binding estimates, which, in turn, strictly differ from the
estimate for the particular target protein. Thus, this target
protein could be detected by means of clusterization of the
proteins to each other.

3. Mathematical definitions

To describe the data mining approach implementing the
above biological background by rSNP_Guide system, the
following mathematical definitions were introduced.

TF, variable attribute, the abbreviation of “Transcription
Factor”, which is the type of regulatory protein.

N, constant value, the number of SNPs under study.

Score,(TF), variable value, the DNA/protein-binding rate
estimated upon the n-th DNA sequence variant by using TF-
protein specified procedure, the resulted values of which are
normalized by the rule: (i) the means averaged upon 1000
random DNAs equal to “ — 17; (ii) the means averaged over
all known true TF-site sequences equal to “ + 17, (iii) the
threshold discriminating between the true TF-sites and
random DNA sequences equals to “0”.

X — — ={x__,}1=u=2n, Vvariable vector, the -cluster
center aimed at collecting all nuclear proteins except the

only target protein, which specific site on DNA is altered
by mutations under study.

X + + = {x4 1, }1=n=on, variable vector, the clustering
center aimed at detecting the single target protein in case
if “both DNA strands carry the sites altered by mutation and
specific for binding of this target protein”.

X + — = {x;4_, }1=n=2n- variable vector, the clustering
center aimed at detection of the single target protein in
case if “only the (+)-chain has the mutation-altered sites
specific for binding to this target protein”.

X — + = {x_4,}1=n=on, variable vector, the clustering
center aimed at detection of single target protein in case if
“only the (—)-chain carries the sites altered by mutation and
specific for binding to this target protein”.

X+-e{X++, X+ —, X— +}, all three possible
clustering centers aimed at detection of the target protein;
set of which is formalized by SNP-referred alterations in the
pattern of DNA binding to unknown protein. It is measured
as the relative degree on the scale from “ — 1” (minimal) to
“ + 1”7 (maximal) with the “0” in the case “no ideas”.

Dy x, variable value, Euclidean distance from each clus-
tering center, Xs, to each vector representing DNA binding
to known protein, TF, dependent on the SNP-referred
sequence variants.

Dx__ x+., variable values, the membership thresholds
discriminating the clustering center aimed at detection of
the target protein, X + «, from the clustering center, X——,
aimed at collecting the rest proteins.

drpx+., variable value, a clustering memberships esti-
mate, which states that “on DNA examined, there exists
the site altered by mutation and specific for binding with
the protein TF”.

drpx——, variable value, a cluster memberships estimate,
which states that “on DNA examined, there exists no sites
altered by mutation and specific for binding with the protein
TF”.

14.,» constant value, the Student’s 7-coefficient at signifi-
cance level « and freedom degree v.

s.d.(§), variable value, an estimate of the standard devia-
tion of the &-variable.

{X + - = TF}, variable value, prediction of the type “TF-
site, alteration of which is associated with genetic disease”.

4. First step of data mining: estimating DNA-protein
binding ability

With 2 X N DNA sequences of N SNP-referred variants
of interest for the (+) and (—) strands prepared in advance, a
user loads the rfSNP_Guide, http://wwwmgs.bionet.nsc.ru/
mgs/programs/rsnp/. Screen B in Fig. 1 shows the upper
section of the user interface window, where a protein (TF)
of interest should be selected. When a TF is clicked on
(arrow 1A), the tools appear for its corresponding the TF-
specific site recognition (Screen E). The user enters into the
input box each sequence variant (arrow 1B) and receive the
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graphical representation of the TF site recognition Score
(Screen F, arrow 1C). With a dominant peak, the corre-
sponding score on the left axis is entered in the proper
box in the user interface (arrow 1D). When all sequence
variants have been treated, the next TF is selected and the
process repeated. When all TFs of interest have been exam-
ined by this way, the vectors, {Score,(TF)},<,<oy, are
assigned by the numerical estimates of the SNP-referred
DNA binding to each examined protein, TF, and, thus,
this step is ended.

5. Second step of data mining: formalizing DNA/protein-
binding pattern

When all TFs of interest have been examined, the SNP-
referred experimental data on the alterations in the exam-
ined DNA binding to unknown protein are entered in the
interface section “DNA/protein Binding” (Fig. 1, Screen D)
data for each sequence variant, estimating the relative
degree of protein binding on a scale of +1 (maximal) to
—1 (minimal). Screen A in Fig. 1 exemplifies the experi-
mental data. Formalizing of these data is illustrated in
Screen D: since the framed band corresponding to DNA
variant “CA” is absent in genome variants “CC” and
“GC”, the box “SNP #1” is assigned by the maximal relative
degree “ + 17, whereas the boxes “SNP #2” and “SNP #3”
are assigned by the value “0”. Next, these data are automa-
tically input into the proper boxes of three vectors X+ +,
X+ —,and X — +, which are located just below the inter-
face section “DNA/protein Binding”. After that, the means
averaged upon all negative estimates of the examined DNA
binding to TFs of interest are automatically calculated and
put into the remaining boxes of three vectors X+ -+,
X+ —,and X — +, and also, into each box of the vector
X — located below. As one can see, when all components of
four Xs are assigned, four possible cases of “the examined
DNA binding to unknown protein due to the presence/
absence of this protein-specific site on (+) and/or (—)
DNA strands are formalized, and, thus, the second step of
data mining is fulfilled.

6. Third step of data mining: fuzzy clustering regulatory
proteins

At this step, we compare two sorts of DNA-protein bind-
ing estimates prepared at two preceding steps: (i) if the
known proteins are examined, {Score,(TF)},<,=<.y, and,
(ii) if unknown target protein binds to the DNA site altered
by mutations, Xs. First, Euclidean distances, Drg x, scaling a
similarity between each pair (TF; X) is calculated:

Drpx = [3)=p=on(Score,(TF) — x,)*]">. (1

In Fig. 1, arrow 3A illustrates the automated calculation
by the formula (1). The results of this calculation could be
checked up by a user. Next, three thresholds, Dy__ x..,

discriminating each target clustering nuclei, X +- €&
{(X++, X+ —, X—+}, from the main clustering
nucleus X — are calculated by formula (1).

Finally, on the basis of these distances and their thresh-
olds, for each known protein examined, TF, for its member-
ship rate estimates, drg x, of each cluster representing one of
four possible cases “the TF-specific site is present/absent on
the (+)/(—)-chain of the DNA altered by the mutations
studied” are calculated by using t-test, as it is shown by
arrow 3B in Fig. 1:

drgx——= tay X 8.d.(Drpx——) = Drpx——; )

toz;v X S-d-(DTF,X+)- (3)

As seen, since each known regulatory protein, TF, has
been assigned by its membership rate estimate to each
cluster center formalizing the presense/absence on DNA
the TF-specific site, which was altered by mutations under
study, this step of data mining is fulfilled in accordance with
fuzzy sets criterion [11].

drpx+=Dx—— x+- — Drpx+ —

7. Fourth step of data mining: predicting site associated
with disease

During this data mining step, only the single known regu-
latory protein, TF, would be detected by one of three
vectors, X +-€ {X+ +, X+ —, X — +}, formalizing
“the alterations in DNA site-specific binding to unknown
protein”, when all remaining proteins could be clustered
to each other by the remaining vector, X — , formalizing
the case of “no specific site is present on this DNA altered
by mutations under study”. With all membership rate esti-
mates available, for each pair {X + -, TF}, use the rule:

IF {dTF,X+- > O} AND {dTF,Xff < O} THEN {X + -

~ TF}
)

In Fig. 1, arrow 4 illustrates successful usage of the rule in
the real case of the GATA site presence in the intron #2 of
the mouse K-ras gene, which is associated with the lung
tumor.

If either several or no TFs are predicted, the significance
value (a < 0,025, default) can be varied in between 0.00005
and 0.1. In addition, the handmade threshold of the cluster
membership rate estimates could be varied from 0 (default)
to 1 in accordance with degree of similarity between the
known proteins and the unknown one, which was detected
due to alterations of its site by mutation.

8. Fifth step of data mining: testing robustness

For the testing of robustness [25], the vectors
{Score,(TF)},<,<oy of the DNA binding estimates of all
proteins considered (Step 1) and only one cluster center,
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X + -, selected by the rule (4) are inputted into the standard
package STATISTICA. With these input data, each
STATISTICA option-pair, one among six similarity scales
and one among seven clustering methods, is tested for
clarifying whether preliminary prediction {X + - = TF} is
confirmed (i.e. the test is robust) or not. When all 7 X 7 =49
“scale + method” pairs are checked up, the ratio robust/
all tests estimates the robustness of the {X + - = TF}
prediction.

9. System design

Following the modern concept “free source code”, our
data mining approach is implemented with the system
rSNP_Guide by the standard Java-script tools, the source
code of which is loaded and, after that, both line-by-line
interpreted and executed by the Web-browser of a user’s
platform. We have successfully tested that these simple
Java-script tools are compatible with any Web-browser
available for us. The rSNP_Guide is the so-called ‘“real-
time” system, i.e. a single user’s query is immediately
processed. Depending on genome sequence variants and
regulatory proteins of a user interest, the in-depth analysis
of given SNP-referred experimental data by the
rSNP_Guide requires from several minutes to many hours.
Finally, for maximizing a user’s trust to predictions made by
rSNP_Guide, all results of computations are available (as
seen in Figs. 1 and 2), and, thus, both intermediate and final
results could be verified by user with a simplest calculator
used “by-hand”.

10. Experimental results

K-ras gene. The K-ras gene is widely used as genetic
marker of susceptibility in different mouse strains to spon-
taneous and chemically induced mutagenesis in lung[17].
Three alleles of this gene are known. They are denoted as
sensible (K*), intermediate (K'), and resistant (K") alleles
and are related to different expression patterns of this
gene. All K" allele carriers are characterized by tandem
repeat of 37 bp in length in the second intron (282—
355 bp). K* and K' carriers have only a single copy of this
repeat. In addition, we have found two single nucleotide
substitutions inside the repeated unit, which correlate to
lung tumor susceptibility. In particular, the tumor-suscepti-
ble allele has the C nucleotide at 288 bp position and A
nucleotide at 296 bp position, whereas the intermediately
resistant allele is characterized by substitution ? < C, and
the resistant allele carries one more substitution ? «— G [17].
We have supposed that nucleotide substitutions may be
located within the region binding to some regulatory
protein, thus leading to decrease in the K-ras gene expres-
sion.

For examining this supposition, in this work we have
synthesized three 30 bp double stranded oligonucleotides

corresponding to three alleles within the region between
278-307 bp of the second intron of the mouse K-ras
gene: the tumor-sensible “CA”, 5’-gtgcaagaaaCtccacttAt-
catgagagct-3'; the tumor-intermediate “CC”, 5'-gtgcaa-
gaaaCtccacttCtcatgagaget-3'; and, finally, the tumor-
resistant  “GC”, 5'-gtgcaagaaaGtccacttCtcatgagagct-3.
Then, under fixed concentration, each oligonucleotide has
been preincubated together with the lung nuclear extract
prepared by the standard manner that is the mixture of all
regulatory proteins presenting within the nucleus of the lung
cells. For identifying the complexes formatted due to the
olignucleotide binding to the lung nuclear proteins, the
separation of these complexes by their molecular mass,
which influences gel mobility, was made by electrophoresis.
The result is given in Fig. 1(A). In this figure, one can see
four horizontal band series demonstrating that at least four
regulatory proteins from lung cell nucleus can bind to this
particular DNA region. In addition, the dotted frame in this
figure demonstrates that the main band characterizing the
allele “CA” is absent in both “CC” and “GC” alleles, hereby
three remaining band series remain constant within each
allele. It means that the DNA region under study has four
regulatory protein binding sites as minimum, whereas the
only one of them is present in the tumor-sensible allele and
absent in both intermediate and resistance alleles.

With these input data, rfSNP_Guide has predicted the
GATA site among 41 known sites considered (Fig. 1). To
verify this GATA site prediction, we have planned and
carried out one more gel mobility shift experiment, an addi-
tional step of which with respect to the first one was in
incubating the lung nuclear extract together with the anti-
GATA antibodies. These control test results are shown in
Fig. 1(H). In this figure, one can see that the band corre-
sponding to the tumor-sensible allele becomes less intensive
with increase of the anti-GATA antibody concentration. It
means that this band corresponds to the complex of the
oligonucleotide “CA” binding to the regulatory proteins
GATA, concentration of which in the lung nuclear extract
decreased due to addition of the anti-GATA antibody. Thus,
the gel mobility immune-shift assay has proved that the lung
tumor susceptibility is dependent on the GATA site
presence in the “CA” allele of the K-ras gene. So, resistance
to lung tumor is associated with the absence of the GATA
site.

TDO2 gene. One more example of our original SNP-
related experimental research is application of the
rSNP_Guide to the SNP-analysis for the TDO2 gene,
polymorphism of which has been identified and significantly
positively associated with the drug dependence, Tourette
syndrome, and attention deficit hyperactivity disorder
[18]. For the TDO2 gene, Fig. 2 illustrates (a) the SNP-
referred experimental data on the alterations in the
examined DNA binding to unknown protein; (b) both
SNP-referred data input and predicted YY1-site output;
(c) the robust test of this YY1 site prediction; and (d) the
anti-YY1 antibody super-shift assay that completely
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Control tests results obtained by the system rSNP_Guide on the SNPs-related experimental data given in Table 1

Data Prediction Control test

Gene SNP Extract/cell N+*? Site Chain drryx Ng° Experiment Genetic disease

K-ras CA Lung 0.16 GATA (+) 0.01 0.83 Anti-GATA antibody (this Tumors in lung [17]

work)

CC
GC

TDO2 WT Liver 0.24 YYI (-) 0.08 0.83 Anti-YY1 antibody (this work) Drug dependence, Tourette

syndrome attention deficit [18]

Ml
M2

NTF« aG MonoMac6 0.10 OCT (+) 0.07 0.6 Anti-OCT antibody [19] Severe malaria [19]
aA

Pc WT HepG2 0.16 HNF1 Both 0.28 1.00 Anti-HNF1 antibody [20] Type I protein C deficiency [20]
MT

GplbB WT CHREF-288 0.27 GATA (-) 0.02 1.00 Anti-GATA antibody [21] Bernard-Soulier syndrome [21]
MT

fvi WT HepG2 0.35 Spl (-) 0.01 0.71 Anti Spl antibody [22] Severe bleeding disorder [22]
MT

Gy WT MEL 0.35 CP-1 (+) 0.03 0.81 Consensus competition [23] Hereditary persistence of fetal

hemoglobin [23]

MT

* N +, ratio “false positives”/total recognitions of the examined regulatory sites upon all DNA sequence variants considered by these site textual patterns

BEFORE the usage of the clustering approach

® N, ratio robust/total tests’ relying to the all possible “scale-method” pairs of six similarity scales and seven clustering methods available within the

standard package STATISTICA.

supports the computer-assisted prediction by rSNP_Guide.
As one can see in Fig. 2(d), for the TDO2 gene, we have
used another sort of antibodies than in case of the K-ras
gene analysis (Fig. 1(H)). Addition of the anti-YY1 antibo-
dies does not modify the binding pattern of DNA to the
regulatory protein YY 1. However, the molecular mass and
gel mobility of the YY1/DNA-complex are altered because
of addition of the anti-YY1 antibodies to the protein-oligo-
nucleotides complex. As one can see in Fig. 2(d), the band
under study is seen only in the liver nuclear cell extract
(marked by arrow “YY1”) and it is shifted due to the anti-
YY1 antibody additives (arrow “S”). This widely used
method called “immune-supershift” has precisely proved
that this band corresponds to the site-specific YY1/DNA
complex formation. Thus, we have successfully predicted
that mutations damaging the YY1 site are responsible for
several mental disorders [18].

Genes with known site-genetic disease relationships. For
control testing of the rSNP_Guide work, we have addition-
ally studied several genes: NTF« [19], pC[20], GpIbB [21],
fVII [22], and Gy [23] with known site-genetic disease rela-
tionships (Table 1). The results obtained are presented in
Table 2. As follows from the table, all control results are in
agreement with the earlier published control test results
obtained by using either antibody super-shift assay or
competitor-binding experiments, as well as with almost all
cluster-analysis schemes produced by the standard STATIS-
TICA package and used for the testing of robustness.

11. Conclusion and perspectives

In this paper we have presented a data mining system,
called rSNP_Guide, to discover regulatory sites in DNA
sequences which mutations could be the cause of genetic
diseases. Our Systems follows the following steps: (i) esti-
mating the examined DNA binding to the known proteins of
interest; (ii) formalizing the experimental data on the altera-
tions in the DNA binding to unknown protein; (iii) fuzzy
clustering the known proteins to each others in order to
detect only one of them, which specific site is altered by
mutations and consistent with unknown protein associated
with genetic disease; (iv) predict the known protein, which
specific site can be associated with genetic disease; (v) esti-
mating the robustness of this prediction.

Our system is implemented in Java-skript and integrates
several simplest tools, each recognizing a particular regula-
tory site by its textual pattern, into a data mining system
rSNP_Guide. For maximizing a user’s trust to rSNP_Guide
predictions, we have made all computation results available,
thus, all intermediate and final results could be verified by
user.

As known, the “false positives” obstacle is now the main
limit of the pattern-based site recognition applicability [2].
Table 2 illustrates this drastic limit by the ratio “false posi-
tives”/total recognitions, N + , with the values up to 0.35.
Nevertheless, one can see that our clustering algorithm,
which involves a well known molecular mechanism of the
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DNA/protein binding into the in-depth SNP-analysis, has
successfully discarded these “false positives”.

Since genetic disease may be caused not only by the
presence/absence alterations of a site, but also by quantita-
tive alterations of binding efficiency (e.g. erythroid-specific
DNA-binding protein affinity alterations cause 6-thalasse-
mia [26]), we are planning to accompany the next version of
the rSNP_Guide by our earlier developed Web-tools regres-
sing the activity estimate of a given site upon its sequence
[16].

This allows us to conclude that the data mining based on
integration of available tools and taking into account the
knowledge present in biological sequences gives many
perspectives for future in-depth SNP-analysis.
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